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Abstract 41 
 42 
     CloudSat and CALIPSO satellite observations provide the first global 43 

measurements of the vertical structure of clouds and precipitation, and are used to 44 

examine the representation of tropical clouds and precipitation in the Community 45 

Atmosphere Model Version 3 (CAM3). Mesoscale patterns of clouds and precipitation 46 

are characterized by the joint histograms of atmospheric pressure and signal strength, and 47 

a revised clustering method is used to sort the mesoscale patterns into principal cloud 48 

regimes. A simulator package utilizing a model-to-satellite approach facilitates 49 

comparison of model simulations to observations.  50 

     Results from weather forecasts performed with CAM3 suggest that the model 51 

underestimates the occurrence of low and mid-level clouds, but overestimates that of high 52 

clouds. CAM3 overestimates the frequency of occurrence of the deep convection with 53 

heavy precipitation regime, but underestimates the horizontal extent of clouds and 54 

precipitation when the regime occurs. This suggests that the model overestimates 55 

convective precipitation and underestimates stratiform precipitation. Tropical cloud 56 

regimes are also evaluated in a different version of the model, CAM3.5, which uses a 57 

highly entraining plume in the parameterization of deep convection. The frequency of 58 

occurrence of different regimes from CAM3.5 forecasts compares more favorably to 59 

observations with a reduced incidence of the cirrus and deep convection with heavy 60 

precipitation regimes and an increased incidence of the low clouds with precipitation and 61 

congestus regimes. Despite these improvements, model clouds and precipitation remain 62 

overly reflective in most cloud regimes, and low- and mid-level clouds precipitate too 63 

heavily. By stratifying the frequency of occurrence of cloud regimes according to the 64 



 3

monthly mean 500 hPa vertical pressure velocity, the association between tropical cloud 65 

regimes and monthly mean vertical motion is explored.  66 

 67 
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1. Introduction 68 
 69 
     Although Global Climate Models (GCMs) are the primary tools to predict climate 70 

change, large uncertainties remain in projections of future climate after more than 30 71 

years of GCM development (Houghton et al., 2001; Randall et al., 2007). The different 72 

representations of clouds and their feedback processes in GCMs have been identified as 73 

the major source of differences in model climate sensitivities (Cess et al. 1990; Soden et 74 

al. 2004; Zhang et al. 2005). These differences arise because contemporary GCMs cannot 75 

resolve clouds and highly simplified parameterizations are used to represent the 76 

interactions between clouds and radiation and the large-scale environment resolved by 77 

GCMs. It has been pointed out that improved present-day cloud simulations are needed to 78 

reduce the uncertainties in predicting future climate (Bony et al. 2006; Williams and 79 

Tselioudis, 2007). Widely collected observations are required to assess model 80 

performance and provide valuable information for the development of new 81 

parameterizations. However, the evaluation of GCM cloud simulations has long been 82 

hampered by the lack of suitable observations.  83 

     Field programs with intensive observations are not sufficient to solve the 84 

parameterization problem, because it is unlikely that a few cases will be representative 85 

enough. Traditional methods to obtain global perspective, such as the International 86 

Satellite Cloud Climatology Project (ISCCP; Rossow and Schiffer, 1999) and the Earth 87 

Radiation Budget Experiment (ERBE; Wielicki et al. 1996) rely on radiances observed 88 

by passive sensors on satellites. But because these radiances depend on the integrated 89 

effect of properties of the whole atmospheric column, they provide little information of 90 

the vertical structure of cloud fields. The lack of vertical structure information prevents 91 

an understanding of the hydrologic cycle and the modulation by clouds of the vertical 92 
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distribution of radiative heating rates; it also hinders the evaluation of GCM cloud 93 

simulations. Launched in April 2006, the CloudSat and CALIPSO satellites, flying in the 94 

A-Train constellation (Stephens et al. 2002), provide the first global survey of the vertical 95 

distribution of cloud condensate and precipitation. The Cloud Profiling Radar (CPR) on 96 

CloudSat (Im et al., 2006) is the first spaceborne millimeter-wavelength radar capable of 97 

penetrating optically thick hydrometeor layers. The CALIPSO satellite carries a lidar 98 

system (Winker et al., 2007) as its primary payload capable of detecting optically thin 99 

clouds. The combined information from the two instruments is able to accurately 100 

characterize the vertical as well as horizontal structure of hydrometeor layers (Mace et al. 101 

2008). The only clouds missed by the combined dataset are low-level clouds with 102 

reflectivity less than the detection threshold of the radar that are also beneath clouds 103 

which completely attenuate the lidar pulse (Mace et al. 2008). 104 

     In this study, CloudSat and CALIPSO data are used to evaluate cloud and 105 

precipitation simulations from CAM3, a major United States climate model. Traditional 106 

methods of GCM evaluation use maps of large spatial and temporal means of cloud 107 

variables from both models and observations. However, this method cannot provide an 108 

effective constraint on cloud simulations and cannot assess cloud radiative feedback due 109 

to compensating errors (Norris and Weaver, 2001; Williams et al., 2005). Another 110 

popular method is to investigate relationships between clouds and other atmospheric 111 

parameters using compositing techniques (Ringer and Allan, 2004). Atmospheric 112 

parameters, such as 500-hPa vertical velocity, sea surface temperature, and lower 113 

tropospheric stability (Bony et al., 2004; Williams et al. 2006), have been used in order to 114 

document the relationships between clouds and the parameters that are thought to affect 115 

their evolution. However, it is difficult to identify a small set of key atmospheric 116 
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parameters (Williams et al., 2003; Bony et al., 2004), and there is a lack of reliable data 117 

for some atmospheric parameters. In this study, the cluster analysis method is used to 118 

objectively identify cloud regimes based on cloud observations alone without any 119 

knowledge of other meteorological parameters. By looking for distinctive cloud 120 

mesoscale patterns in ISCCP data, this method has been widely used to characterize 121 

cloud regimes and evaluate model simulations in recent years (Jakob and Tselioudis, 122 

2003; Rossow et al., 2005; Williams and Tselioudis, 2007; Chen and Del Genio, 2008). 123 

This method has also been used to evaluate precipitation regimes from Tropical Rainfall 124 

Measurement Mission (TRMM) precipitation radar data (Boccippio et al., 2005) and 125 

cloud regimes in CloudSat data (Zhang et al., 2007; hereafter Zhang07). This is the first 126 

study to use the cluster analysis method on the combined data from CloudSat and 127 

CALIPSO to evaluate cloud and precipitation simulations of a climate model. 128 

     The paper is organized as follows. In the next section, observational data, model 129 

simulations, and the cluster analysis method are briefly described. The simulator package 130 

that converts model output to observed variables is introduced in section 3, and cloud 131 

regimes from observational data are described in section 4. In section 5, model 132 

simulations are evaluated within the clustering framework, and changes resulting from 133 

the addition of new parameterizations to the CAM are shown. A summary is provided in 134 

section 6. 135 

 136 
2. Data and Methodology 137 

     2.1 Observations  138 

     The CloudSat and CALIPSO satellites are maintained in tight orbital configuration 139 

to facilitate merging of data streams. The orbit is sun-synchronous with the overpass 140 

occurring around 1:30 am/pm local time. The ground track repeats every 16 days, and the 141 
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orbital period is 99 minutes. The CPR on CloudSat is a 94-GHz nadir-pointing radar that 142 

records range-resolved profiles of backscattered power with a nominal footprint of 1.4 143 

km across by 2.5 km along track. Due to the sensitivity of the radar to large particles, the 144 

CPR detects both clouds and precipitation. The estimated CPR minimum detectable 145 

signal is -30 dBZ, and contamination by surface reflection in the lowest 500m of the 146 

atmosphere renders the signal unusable for hydrometeor identification (Mace et al. 2007). 147 

Due to these limitations, CloudSat will miss some fraction of thin cirrus, mid-level liquid 148 

water clouds, and non-precipitating cumulus and stratocumulus clouds as well as all low-149 

level clouds below 500m. 150 

     The two-wavelength (1064 nm and 532 nm) polarization lidar on CALIPSO 151 

provides high resolution vertical profiles of backscattered power from which clouds and 152 

aerosols may be identified. The lidar system, which has higher horizontal and vertical 153 

resolution than the CPR, has the capability to sense optically thin layers with optical 154 

depths of 0.01 or less (Winker et al. 2007), and other clouds such as non-precipitating 155 

stratocumulus whose reflectivity is below the detection threshold of the radar. On the 156 

other hand, the lidar quickly attenuates beyond optical depths of about 3 and cannot 157 

detect many clouds and precipitation identified by the radar (Zhang and Mace 2006; 158 

Mace et al. 2008). The CPR and the CALIPSO lidar complement each other in their 159 

capabilities to observe clouds. 160 

     In this study, two CloudSat standard data products are used to characterize cloud 161 

vertical structures. The first is the Level 2 GEOPROF product (Mace 2004; Mace et al. 162 

2007) which identifies the occurrence of hydrometeors with a masking algorithm and 163 

provides the radar effective reflectivity factor, Ze, expressed in dBZ(=10log10Ze). The 164 

masking algorithm is described in more detail by Marchand et al. (2008). The second is 165 
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the Level 2 GEOPROF-LIDAR product (Mace et al. 2008) which contains the estimates 166 

of lidar-determined cloud fraction within CPR sample volumes. The lidar information is 167 

from the CALIPSO Level 2 Vertical Feature Mask which reports the location of aerosol 168 

and cloud types.  169 

     In this study, tropical (23.5˚S − 23.5˚N) observations for the period June-170 

September in 2006 are used. Although not shown here, data for the same months in 2007 171 

confirm the robustness of the results. Following the approach in Zhang07, a sequence of 172 

200 adjacent profiles of satellite data (approximately 2° of latitude) define an individual 173 

cloud region from which joint histograms of atmospheric pressure and signal strength are 174 

computed to characterize the mesoscale patterns of cloud and precipitation. The 175 

histograms contain the relative frequency of occurrence (RFO) of clouds and 176 

precipitation in categories of seven signal bins and seven pressure levels; a sample 177 

histogram is shown in Figure 1. To construct the joint histograms, radar reflectivity above 178 

-30 dBZ with CPR cloud mask greater than or equal to 20, which means clouds with low 179 

chance of a false detection (Marchand et al., 2008), is binned into six categories with a 180 

bin interval of 10 dBZ. A seventh bin at the left side of the diagram displays the RFO of 181 

lidar detected clouds which are not detected by the radar because the reflectivity is less 182 

than -30 dBZ, the minimum detectable signal of the radar. The reported RFO is the 183 

percentage of observations within a given pressure bin that have the reported signal 184 

strength. Thus, if all volumes within a given pressure range for a 2° region had cloud or 185 

precipitation identified by either CloudSat or CALIPSO, then the sum of RFOs over all 7 186 

signal bins in the given pressure range would be 100%. To facilitate comparison with 187 

previous cluster studies using ISCCP data, the boundaries of the seven pressure bins 188 

coincide with those used by ISCCP, and the conversion from altitude to pressure is 189 
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attained by use of analysis data provided by the European Center for Medium-range 190 

Weather Forecasts (ECMWF) in the ECMWF-AUX product released with CloudSat and 191 

CALIPSO data. The characteristic patterns of this joint histogram will be used in the 192 

cluster analysis technique to determine tropical cloud regimes. While these 200-profile 193 

snapshots are created sequentially, a sensitivity study, which uses another set of 194 

snapshots collected by taking a 100-profile step forward compared with the original set, 195 

shows that these 200-profile snapshots are able to independently represent the tropical 196 

cloud regimes. 197 

     2.2 CAM3 and model integrations 198 

     In this study, cloud and precipitation simulations of the Community Atmospheric 199 

Model version 3.1 (Collins et al., 2006) are examined. The version of CAM3.1 used in 200 

this study employs the finite volume dynamical core with horizontal resolution of 1.9º 201 

latitude by 2.5º longitude and 26 vertical levels. CAM 3.1 treats stratiform cloud 202 

microphysics based on the prognostic cloud water formulation of Rasch and Kristjansson 203 

(1998) with modifications made by Zhang et al. (2003). There are two parameterizations 204 

of moist convection in the model: a shallow depth mixing parameterization (Hack 1993) 205 

and a deep convection parameterization (Zhang and McFarlane, 1995) which convects 206 

whenever the convective available potential energy exceeds a small threshold of 70 J/kg. 207 

     In addition to CAM3.1, a later version of the model, CAM3.5, will also be 208 

evaluated. While there are numerous differences between the two versions, the key 209 

difference lies in two modifications to the parameterization of deep convection. The first 210 

modification is the inclusion of a parameterization of cumulus momentum transport 211 

(Richter and Rasch, 2008). The second modification uses a highly entraining (as opposed 212 

to undilute) plume to calculate available potential energy and prohibits convection when 213 
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there is no available potential energy for this entraining plume (Neale et al., 2008). As a 214 

result, deep convection will be suppressed if the troposphere is dry even if the convective 215 

available potential energy for an undilute plume exceeds 70 J/kg. 216 

     Although CAM is a climate model, we examine simulations of CAM performed in 217 

weather-forecast mode (Phillips et al., 2004) to better identify parameterization-related 218 

deficiencies in the simulation of clouds and precipitation. With a weather-forecasting 219 

approach, it is more likely that errors can be ascribed to the model parameterizations of 220 

moist processes, because the large-scale atmospheric state in the early periods of a 221 

forecast is relatively close to reality. In this study, a series of forecasts are performed 222 

which commence every day in the time period from June to September 2006. Forecasts 223 

are initialized from analyses of the National Center for Environmental Prediction (NCEP) 224 

and we examine model data from day-2 forecasts. 225 

     Considering the overpass time of the A-Train constellation, the model simulations 226 

at 1 am and pm local time are compared to observations. Tests show that the geographical 227 

distribution of the RFO of cloud regimes significantly changes if simulator output at 228 

other times is used while the joint histograms of atmospheric pressure and signal strength 229 

are still similar to those from model output at 1 am and 1pm local time. This reminds the 230 

reader that some of the geographical patterns shown below result from an incomplete 231 

sampling of the diurnal cycle by CloudSat and CALIPSO (Liu et al., 2008). 232 

     2.3 Clustering method  233 

     In this paper, the joint histograms of atmospheric pressure and signal strength are 234 

used to characterize the vertical distributions of hydrometeors. In Zhang07, characteristic 235 

patterns in these histograms of CloudSat data were identified using a K-means cluster 236 

algorithm (Anderberg, 1973). The algorithm determined the patterns from a vector that 237 
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consisted of the 42 independent elements of the joint histogram. A drawback of this 238 

method is that information on the distance in pressure or signal strength between 239 

elements is not considered and thus results may be sensitive to the discretization of the 240 

histogram (Williams and Webb, 2008). As an alternative, clustering is performed using a 241 

7 element vector that equivalently illustrates the vertical profiles of signal strength. This 7 242 

element vector which we call the normalized mean dBZ index is computed from the joint 243 

histogram of cloud patterns in the following manner. As depicted in the upper abscissa of 244 

Figure 1 (c), a dBZ index integer for each bin of signal strength is assigned. For example, 245 

if the radar reflectivity dBZ is between -20 and -10, the dBZ index is 3. Likewise if the 246 

hydrometeor is detected by the lidar only, the dBZ index is set to 1. The normalized mean 247 

dBZ index at each of the 7 pressure levels is computed as the sum of RFOcld*dBZ_ind, 248 

where RFOcld is the relative occurrence frequency of a certain dBZ range/lidar bin in all 249 

the cloudy pixels at a given pressure level, and dBZ_ind is the dBZ index. If there are no 250 

hydrometeors in a pressure level, then the normalized mean dBZ index is set to 0. In 251 

Figure 1 (c), the line with diamonds shows the vertical profile of the normalized mean 252 

dBZ index for this cloud pattern. 253 

     There are two major benefits to expressing the vertical structure of a hydrometeor 254 

pattern in this way. First, the vertical profile of the normalized mean dBZ index describes 255 

the dominant hydrometeor system in a region. This is because higher radar reflectivity 256 

roughly corresponds to larger particle sizes and cloud water contents. Rain and drizzle is 257 

indicated by dBZ larger than ~ -15 (Frisch et al., 1995; Stephens and Woods, 2007) 258 

whereas liquid clouds without rain or drizzle will have dBZ less than -15 and often less 259 

than -30, in which case only the lidar can detect the cloud. For ice, thin cirrus clouds 260 

typically have dBZ of -50 to -20 dBZ, whereas larger ice particles exhibit dBZ larger than 261 
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-20. Second, the use of a normalized mean dBZ index facilitates the comparison of 262 

observations with model simulations. This is because the model only predicts the grid-263 

box mean cloud and precipitation condensate and thus assumptions would be necessary to 264 

reproduce the spread of dBZ often observed in clouds. Although we could use 265 

assumptions to generate the subgrid-scale variability in the simulator, the current version 266 

of the simulator distributes the model’s cloud condensate and precipitation uniformly 267 

among the subgrid-scale columns designated to have cloud or precipitation, with the 268 

result that the histograms of signal strength are more narrow than is typically observed. A 269 

negative consequence of using the normalized mean dBZ index is that cloud coverage, a 270 

variable used in previous clustering analyses (Jakob 2003, Williams and Webb, 2008), is 271 

unused. This may not be a serious problem since the measurements, which are collected 272 

from a vertical curtain under the satellite track, may poorly estimate the cloud coverage 273 

in each 2-degree region. Note that while clustering is performed using the normalized 274 

mean dBZ index, all results in this paper are displayed using the joint histogram of 275 

atmospheric pressure and signal strength. 276 

     The clustering method iteratively searches for a predefined number of clusters 277 

starting with initial seeds. These seeds, used to create the initial cluster centroids, are 278 

selected randomly from the dataset with the only restriction being low correlation 279 

between any two seeds. The cluster centroids represent specific patterns in the vertical 280 

profile of the mean dBZ index. Every 2 degree CloudSat curtain is assigned to the cluster 281 

whose centroid has the minimum Euclidian distance in the vertical profile of the mean 282 

dBZ index. There are two ways to calculate the cluster centroids during the iterations. 283 

One is to recalculate the centroids after all elements are assigned to a cluster, and the 284 

other is to recalculate the cluster centroid each time an element is assigned to a cluster. 285 
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The latter way is used here because results depend less on the initial seeds chosen and the 286 

algorithm converges faster. To simply test the sensitivity of clustering results to initial 287 

seeds, the algorithm was repeated 30 times and a dominant set of cloud clusters is 288 

obtained in at least 75% of tests. 289 

     A limitation of the K-means algorithm is that the number of clusters needs to be 290 

subjectively specified in advance. Here the number of clusters is determined following 291 

the empirical criteria of Rossow et al. (2005). The correlation coefficients among the 292 

vertical profiles of the normalized mean dBZ index of the centroids and the geographical 293 

distributions of the frequency of occurrence of each cluster are used to judge the 294 

outcome. If the correlation between any two resulting clusters in both the centroid and the 295 

geographical distribution exceeds 0.7, the two clusters are designated as belonging to the 296 

same principal cloud regime. In the end step, subjective decisions are made to combine 297 

some of the resulting clusters and form a set of principal cloud regimes as has been done 298 

in previous studies (Williams and Tselioudis, 2007; Williams and Webb, 2008).  299 

 300 
3. CFMIP observation simulator package (COSP) 301 
 302 
     To facilitate a meaningful comparison of the model with CloudSat and CALIPSO 303 

measurements, we use a simulator package which has been developed through 304 

international collaborations under the framework of the Cloud Feedback Model 305 

Intercomparison Project (CFMIP, http://cfmip.metoffice.com/CICCS.html). To avoid 306 

significant ambiguities in the direct comparison of model simulations with retrievals from 307 

observations, the CFMIP Observation Simulator Package (COSP) converts model clouds 308 

into pseudosatellite observations with a model to satellite approach that mimics the 309 

satellite view of an atmospheric column with model-specified physical properties. The 310 

approach accounts for observational limitations of the instruments. 311 
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     COSP has three major parts: the generation of a subgrid-scale distribution of cloud 312 

and precipitation, the simulation of radar and lidar signals from this distribution, and the 313 

computation of statistical summaries from the subgrid-scale distribution of simulated 314 

signals which can then be compared to similar statistical summaries computed from 315 

observations. In the first part, each GCM grid box is equally divided into a number of 316 

vertical columns (50 in this case) and clouds are assigned to these columns in a manner 317 

consistent with the model’s grid-box average stratiform and convective cloud amounts 318 

and its cloud overlap assumption. The scheme which produces a subgrid distribution of 319 

clouds is the Subgrid Cloud Overlap Profile Sampler (SCOPS) which is also used in the 320 

ISCCP simulator (Klein and Jakob, 1999; Webb et al. 2001). Note that the grid-box mean 321 

cloud condensate is divided equally among all columns that SCOPS designates as cloudy. 322 

     The next step is to determine which of the columns generated by SCOPS contain 323 

rain and snow. The scheme used is called SCOPS_PREC and is similar to that of 324 

Chevallier and Bauer (2003) and O’Dell et al. (2007). The inputs to SCOPS_PREC 325 

include the sub column distribution of large-scale and convective clouds from SCOPS 326 

and the model’s grid-box mean precipitation flux of large-scale and convective rain and 327 

snow. Note that this scheme currently ignores any parameterization of precipitation area 328 

fraction that some models have (Jakob and Klein, 2000). To allow a close match between 329 

clouds allocated by SCOPS and precipitation produced by the clouds, precipitation is 330 

assigned to columns with the following algorithm which starts at the top-of-atmosphere 331 

and proceeds downward to the surface. There are in total five possibilities for the 332 

assignment of precipitation to columns, and they are used with different priorities. First, 333 

large-scale precipitation is assigned to all columns that either have stratiform clouds in 334 

the current level (possibility one) or large-scale precipitation in the level above 335 
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(possibility two). These two possibilities account for the overwhelming majority of cases. 336 

However, there may be rare instances where precipitation is not assigned after applying 337 

these possibilities. For these rare instances, the following possibilities are applied. The 338 

third possibility is to assign large-scale precipitation to all columns that have stratiform 339 

clouds in the level below. If precipitation is not assigned with the third possibility, then 340 

large-scale precipitation is assigned to all columns that have stratiform clouds anywhere 341 

in the vertical column (possibility four). If after this possibility, precipitation is still not 342 

assigned then it is assumed that large-scale precipitation covers 100% of the area and 343 

every column is filled with precipitation (possibility five). Possibility five is only used in 344 

the pathological case where the grid box has stratiform precipitation but no stratiform 345 

clouds. The same method is used to assign convective precipitation to columns using the 346 

convective clouds apportioned by SCOPS. The only difference is that convective 347 

precipitation is assumed to cover 5% of the area in possibility five. Following this 348 

assignment, the gridbox mean precipitation flux is, for lack of a better method, divided 349 

equally among all of the columns assigned to have precipitation. Then, the local 350 

precipitation flux is converted to a mixing ratio following Khairoutdinov and Randall 351 

(2003) who assume a Marshall-Palmer size distribution for precipitation and make a set 352 

of assumptions for particle terminal velocity. 353 

     In the second part of COSP, the radar and lidar signals are calculated using the 354 

column distribution of cloud and precipitation. The QuickBeam code (Haynes et al., 355 

2007) is used to simulate the radar signal and calculates the vertical profiles of radar 356 

reflectivity accounting for attenuation of the radar beam from intervening hydrometeors, 357 

the atmospheric profiles of temperature and humidity, and assumptions for the particle 358 

size distributions of each hydrometeor. The ACTSIM code (Chiriaco et al. 2006; Chepfer 359 
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et al. 2007) is used to simulate the lidar signal and calculates the vertical profile of lidar 360 

backscatter from the same set of modeling variables excluding precipitation 361 

hydrometeors which contribute negligibly to the lidar backscatter. The simulated signals 362 

are considered valid where cloud optical depth is lower than about 2.5 and saturated if 363 

cloud optical depth exceeds this value. Aerosols are not currently included in the lidar 364 

simulator. 365 

     In the third part of COSP, statistical summaries are generated from these simulated 366 

signals in a manner similar to that used to derive the hydrometeor mask from the 367 

CloudSat and CALIPSO observations (Mace et al., 2008). In particular, we compute the 368 

joint histogram of atmospheric pressure and signal strength taking into account the radar 369 

sensitivity of -30 dBZ, surface contamination effects (Mace et al. 2007), and saturation of 370 

lidar signals. When the lidar detects cloud using a threshold value of normalized 371 

backscatter ratio of 3 and radar reflectivity is less than -30 dBZ, the occurrence frequency 372 

will contribute to the first column of the histogram. Volumes with radar reflectivity less 373 

than -30 dBZ that are beneath the level of complete attenuation of the lidar beam will be 374 

considered as clear. In these ways, the cloud and precipitation fields from model 375 

simulations are diagnosed in a manner as close as possible as the diagnosis with real 376 

observations.  377 

     While many sources of uncertainty can affact the output of COSP, two major 378 

uncertainties arise from the assumed particle size distributions for different hydrometeors 379 

and the methods used to generate subgrid-scale inhomogeneity in cloud condensate and 380 

precipitation. For example, Bodas-Salcedo et al. (2008) examined the role of the shape of 381 

the ice particle size distribution and found that the calculated radar reflectivity can 382 

change by around 5 dBZ from increasing or decreasing the intercept of the assumed 383 
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exponential distribution by a factor of 5. Since the signal bin width we select is 10 dBZ, 384 

an uncertainty of this magnitude will not significantly change our conclusions. Further 385 

exploration of uncertainties can be made by using the different distribution models 386 

available in the radar simulator. The applicability of homogenous horizontal distribution 387 

of cloud condensate and precipitation in subgrid scale and the cloud and precipitation 388 

overlap are two important issues for an accurately simulated signal. Zhang et al. (2005) 389 

found little sensitivity of model biases in comparison with ISCCP observations to the 390 

replacement of randomly overlapped horizontally homogenous clouds with exponentially 391 

decaying overlapped horizontally inhomogeneous clouds following the method reported 392 

on in Pincus et al. (2006). For COSP, the signals will also be sensitive to the assumption 393 

that the entire cloud generates precipitation and that the precipitation area does not 394 

decrease beneath the cloud unless all of the precipitation evaporates. Testing the 395 

sensitivity of the simulated signals to these assumptions will require future work. In the 396 

context of this study, we will partially address the possible bias caused by distribution 397 

assumptions by artificially homogenizing the observations to GCM gridbox scale (see 398 

below). 399 

     Figure 2 displays a sample comparison between simulator output from CAM3.1 400 

day-2 forecasts and the observations. It shows the east-to-west distribution of clouds in 401 

the tropics formed as an average over tropical latitudes for June through September 2006. 402 

CAM3.1 is able to capture some aspects of clouds related to the large-scale circulation 403 

such as the abundance of clouds in the Asian Monsoon (70E through the dateline) and the 404 

preferential occurrence of low clouds to the west of South America (80˚W to 160˚W) and 405 

Africa (0˚W to 40˚W). However, it is clear that the model has too frequent high clouds 406 

but too few mid- and low-level clouds. One interesting detail is that many CAM3.1 407 
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clouds have cloud water contents too small to be detected by either the radar or the lidar 408 

(This is the so-called “empty cloud” problem where cloud fraction is non-zero but cloud 409 

condensate is zero.). However, because these figures display averages over large 410 

temporal and spatial scales, they cannot indicate the exact disparities in cloud types 411 

between simulated and observed cloud systems. More detailed comparison is required to 412 

investigate whether the model can simulate specific clouds with the correct frequency in 413 

the right location. This motivates the following analysis of cloud regimes. 414 

      415 
4. Clustering of tropical CloudSat and CALIPSO data 416 
 417 
     The results of applying the clustering method to CloudSat and CALIPSO 418 

observations are shown in Figures 3 and 4. These figures depict the cluster centroids in 419 

terms of the joint histogram of atmospheric pressure and signal strength (Figure 3) and 420 

the occurrence frequency maps of different cloud regimes (Figure 4). The different 421 

locations of maximum RFO for different cloud regimes is indicative of the association of 422 

cloud regimes with specific characteristics of the large-scale atmospheric circulation and 423 

thermodynamic states (Del Genio and Kovari, 2002; Rossow et al. 2005). Table 1 424 

displays the tropical average relative frequency of occurrence and total cloud cover for 425 

each cloud regime. 426 

     Six cloud regimes are able to describe the variations of tropical cloud systems. 427 

Cloud regimes are given names based on the qualitative assessment of the joint 428 

histograms of atmospheric pressure and signal strength for each cluster (Figure 3). The 429 

first regime with an occurrence frequency of 35% (Table 1) is the most common cluster 430 

of the six, and is named as low cloud with less precipitation. Most of the clouds are 431 

detected by the lidar, and only a small fraction of clouds is detected by the radar. The 432 

second regime is named low cloud with precipitation due to the greater fraction of dBZ 433 
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values in excess of -15, which is an approximate threshold that distinguishes cloud from 434 

drizzle and rain (Frisch et al., 1995; Stephens and Wood, 2007). These two regimes are 435 

found with concentrations in the large subsidence regions of the tropical oceans (Klein 436 

and Hartmann, 1993). The first regime has the highest RFO at the west coasts of 437 

continents where marine stratocumulus clouds are known to be prevalent (Klein and 438 

Hartmann 1993). The second regime happens more frequently in regions where trade 439 

cumulus are predominant. Over warmer ocean temperatures than the first regime, the low 440 

clouds and precipitation extend deeper with clouds and precipitation occurring in the 680 441 

to 800 hPa bin. The third regime is named thin cirrus and is characterized by clouds at 442 

high levels with low dBZ and sometimes only detectable by the lidar. This regime is most 443 

common in the Caribbean, the African Monsoon and the Asian Monsoon regions of India 444 

and South Asia. The fourth regime consists of clouds and precipitation over a wide range 445 

of dBZ below 440 hPa. This regime is suggestive of isolated convection that reaches the 446 

middle troposphere and will be named cumulus congestus. It often occurs as an important 447 

regime in the transition from shallow cumulus to deep convection. This regime is most 448 

common over the northwestern Pacific on the eastern edge of the Asian monsoon and 449 

with lesser frequency over the Inter-Tropical Convergence Zones of the Atlantic and 450 

Pacific oceans and the African and Asian monsoons. It also has a high RFO over the high 451 

topography of the west coast of South America, east central Africa, and South Asia. The 452 

fifth regime is named cirrus anvils and has a higher RFO at larger dBZ and occurs over a 453 

wider range of pressure as compared to the thin cirrus regime. This cloud type is 454 

generally produced by outflow from deep cumulus or synoptic and mesoscale 455 

disturbances (Sassen and Mace, 2002; Mace et al. 2006) and preferentially occurs over 456 

land areas in the monsoons of Asia, Africa, and Central America. The sixth and last 457 
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regime is named deep convection with heavy precipitation. It occurs most frequently in 458 

the west Pacific warm pool and the Asian Monsoon region (Zipser et al., 2006; Liu and 459 

Zipser, 2005). 460 

     By comparing these cloud regimes to those determined from an analysis of only 461 

CloudSat data (Figure 1 in Zhang07), the value of combining the radar and lidar data is 462 

readily apparent. First, the increase relative to Zhang07 of cloud RFO in the highest 463 

pressure level for most regimes illustrates the capability of the lidar to sense tenuous 464 

cirrus whose radar reflectivity is less than the radar detection threshold. Second, a large 465 

portion of non-drizzling cumulus or stratocumulus are detected only by lidar as indicated 466 

prominently by the two low-cloud regimes. Third, the lidar is capable of detecting thin 467 

mid-level liquid water clouds particularly in the thin cirrus, congestus, and cirrus anvil 468 

regimes. As a result, the occurrence of clear sky decreases from 30% in Zhang07 to 8% 469 

in this study (Table 1). Note that clear sky is defined as when fewer than 5% of adjacent 470 

200 profiles of satellite data have cloud or precipitation; obviously this number is 471 

dependent on the number of profiles in the samples. 472 

 473 
5. Evaluation of CAM simulations 474 
 475 

5.1  CAM3.1 476 

     Model data can be either clustered independently or assigned into the observational 477 

cluster with the minimum Euclidian distance between the modeled and observed 478 

normalized dBZ index. However, if model data are clustered independently, a different 479 

number of clusters may result (Williams and Tselioudis, 2007). In this case, both the joint 480 

histograms and the geographic distributions may differ substantially from the 481 

observations leading to an ambiguous evaluation of model deficiencies. To reduce 482 

complexity, model simulations are assigned to the cluster centroids determined from 483 
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observations, and the joint histograms formed by averaging the modeled elements in each 484 

cluster are shown in Figure 5 with their corresponding RFO geographic distributions in 485 

Figure 6. Tropical averages of the RFO and total cloud cover for each model regime are 486 

reported in Table 1. Projecting model simulations onto the observed clusters allows one 487 

to compare a common set of regimes. 488 

     Results indicate that the two model low level cloud regimes have much less than 489 

observed hydrometeor fraction in their joint histograms of atmospheric pressure and 490 

signal strength. In particular, the model has a strong underestimate of low level clouds 491 

that are detectable only by the lidar. In contrast, the first low cloud regime has more 492 

precipitating cloud than observed, and the intensity of drizzle for the two low cloud 493 

regimes is too high compared with observations, reported recently elsewhere for other 494 

models (Bodas-Salcedo et al., 2008; O’Connor et al., 2009). At the same time, the 495 

modeled RFO of the first regime is much more frequent than observed in the oceanic 496 

subsidence regions, while that of the second regime is much less frequent than observed 497 

in these same regions. For both the thin cirrus and cirrus anvil regimes, the model has too 498 

many clouds with dBZ larger than -10 albeit with a reasonable vertical profile of cloud 499 

fraction in the upper troposphere. However, low clouds overlapped by high clouds are 500 

underestimated in the model. The model simulates the thin cirrus regime nearly twice as 501 

frequently as observed with strong overestimates over the Americas, the central Pacific 502 

Ocean, and the Asian monsoon region. In the opposite direction, the model 503 

underestimates the occurrence frequency of cumulus congestus by a factor of two with 504 

prominent underestimates over the tropical west Pacific, the Asian monsoon region, east 505 

central Africa, and the north part of South America. For this regime, the model 506 

overestimates the occurrence of radar reflectivity above 10 dBZ suggesting that the 507 
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simulated mid-level clouds precipitate too heavily. For the deep convection with heavy 508 

precipitation regime, the hydrometeor coverage is lower than observed at levels beneath 509 

440 hPa, while the frequency of this regime is strongly overestimated. The model radar 510 

reflectivity at middle levels is most frequent in the 10 to 20 dBZ range, while for 511 

observations the most frequent radar reflectivity occurs in the 0 to 10 dBZ range. 512 

Furthermore, the model frequency of large dBZ at lower levels is much less than 513 

observed, which may imply that an unrealistically large amount of model precipitation 514 

does not reach the surface. Regardless of the regime, a very prominent problem evident 515 

from the joint histograms is that the model strongly underestimates the occurrence of 516 

clouds with reflectivity less than -10, particularly clouds which are only detectable by the 517 

lidar. A separate comparison between the cloud optical thickness from model data and 518 

those derived from Moderate-Resolution Imaging Spectroradiometer (MODIS; 519 

Salomonson and Toll, 1991) measurements also illustrates the modeled clouds are too 520 

optically thick (not shown). These results indicate that the model clouds are too 521 

reflective, both at the frequency of the CloudSat radar but probably also at visible 522 

wavelengths (Zhang et al., 2005). 523 

     To investigate the effect of homogenous distribution of cloud condensate and 524 

precipitation, we create another set of the joint histograms for the observed cloud regimes 525 

by averaging up the measurements into grid-box (200 profiles) means and then calculate 526 

the joint histograms from the means using the cluster number determined by the original 527 

joint histograms without grid-box averaging (not shown). The comparison between this 528 

recalculated set and the simulations support that the model clouds are still too reflective 529 

for the two low clouds and two cirrus regimes, and that the model precipitation are too 530 

high. Note that this test probably overestimates the impact of the homogeneity 531 
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assumption, because the averaged histograms mix the cloud and precipitation together, 532 

while the model has a separate representation of cloud and precipitation. 533 

     In order to explore the relationship of model parameterizations to the discrepancies 534 

between models and observations, the simulator is run for convective and stratiform 535 

components of cloud systems separately and the resulting cloud patterns (not shown) are 536 

constructed using the assigned cloud regimes determined from the simulator output 537 

created from the complete cloud systems. For the low clouds with less precipitation 538 

regime, most model clouds are stratiform, while those for the low clouds with 539 

precipitation regime are both convective and stratiform but the mean convective dBZ is 540 

larger than the stratiform dBZ which unsurprisingly indicates stronger precipitation. For 541 

the thin cirrus and anvil cloud regimes, model clouds are predominantly stratiform, while 542 

the clouds of the cumulus congestus regime are from intense convective systems. The 543 

cloud coverage of the deep convection with heavy precipitation regime results equally 544 

from convective and stratiform systems. Unsurprisingly the dBZ of the convective clouds 545 

and precipitation are greater than that of the stratiform clouds and precipitation, and the 546 

modeled stratiform precipitation is less frequent beneath 680 hPa than above which is 547 

suggestive of precipitation evaporation in the lower troposphere. Considering that the 548 

model dBZ is too great, that the area of precipitation is too low, and that the RFO is too 549 

great for this regime, it appears that the model produces too much convective 550 

precipitation but too little stratiform precipitation. This result is consistent with that of 551 

Dai (2006) who found that this model (as well as most atmospheric models) 552 

underestimate/overestimate the accumulated stratiform/convective precipitation in the 553 

tropics based on TRMM observations. 554 

5.2  CAM3.5 555 
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     Applying the same analysis approach to cloud simulations from CAM3.5 yields 556 

joint histograms for the six regimes (Figure 7) that are nearly identical to those from 557 

CAM3.1. However, the differences in the RFO and spatial distributions are remarkable 558 

(Figure 8 and Table 1). First, the occurrence frequency and total cloud coverage of thin 559 

cirrus decreases dramatically with similar but smaller changes for the cirrus anvil and 560 

deep convection regimes. In particular, the decrease in the occurrence frequency of thin 561 

cirrus from 16% to 10% corrects a strong overestimate of the observed occurrence 562 

frequency of 9%. Second, the occurrence frequency of low clouds with precipitation 563 

increases from 14% to 22% with the regime occurring in more extensive oceanic regions 564 

in better agreement with observations. This increase generally comes at the expense of 565 

the low clouds with less precipitation regime whose occurrence is now limited more to 566 

the marine stratocumulus regions also in better agreement with observations. Finally, one 567 

of the most impressive improvements is that CAM3.5 has a strong increase in the 568 

occurrence frequency of congestus from 5% to 10% which is now in agreement with the 569 

observed occurrence frequency of 9%.  570 

     It is tempting to attribute most of the improvements in the regime occurrence 571 

frequencies to the elimination of undilute plumes in the deep convection parameterization 572 

of CAM3.5. Indeed, this is confirmed by examination of a separate integration of 573 

CAM3.5 modified to permit undilute plumes according to the formulation that was used 574 

in CAM3.1 (Table 1). Physically, dilute plumes have detrainment levels in the middle 575 

and lower troposphere and the inclusion of the dilute plumes likely explains the increase 576 

in the occurrence frequency of low clouds with precipitation and congestus, and the 577 

decrease in the occurrence frequency of deep convection. Indeed, in the simulation of 578 

CAM3.5 with undilute plumes, the occurrence frequency of low clouds with precipitation 579 
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decreases from 22% to 16% and the occurrence frequency of congestus decreases from 580 

10% to 5%, confirming that the change in the dilution of convective plumes is 581 

responsible for most of the increase of these regimes from CAM3.1 to CAM3.5. The 582 

reduction in the occurrence frequency and total cloud coverage of thin cirrus that results 583 

from dilute plumes (Table 1) may be the result of decreased condensate and water vapor 584 

detrainment from deep convection in the upper troposphere. This interpretation is 585 

consistent with the strong decrease in the occurrence frequency of the deep convection 586 

with heavy precipitation regime in CAM3.5 (Table 1). 587 

5.3 The association of cloud regimes with large-scale dynamics 588 

To explore the coupling between cloud regimes and the large-scale dynamics that is 589 

supportive of different cloud types, the occurrence frequency of cloud regimes from both 590 

observations and model simulations over ocean are sorted by the value of monthly mean 591 

vertical pressure velocity at 500 hPa (ω500). Although cloud systems may be associated 592 

with other large-scale parameters, such as sea surface temperature or lower tropospheric 593 

stability (Klein and Hartmann, 1993; Weaver, 1999; Williams et al., 2003; Ringer and 594 

Allan, 2004), we choose to examine ω500 because of its recent widespread use in the 595 

analysis of tropical clouds following the pioneering approach of Bony et al. (2004). 596 

NCEP vertical velocities are sorted into 8 bins such that the occurrence frequency of each 597 

bin is equal. The compositing of observed cloud regimes into vertical velocity bins is 598 

performed in two ways (Figure 9). In the first way, the fraction of elements of a given 599 

regime which occur in a given vertical velocity bin is displayed in Figure 9a. If there 600 

were no relationship between a cloud regime and ω500, the occurrence frequency of a 601 

regime in each velocity bin would be equal to 0.125 apart from random fluctuations. In 602 

the second way, the fraction of elements in a given vertical velocity bin which belong to a 603 
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given regime is displayed in Figure 9b. In this way, the sum of the frequencies for the six 604 

regimes in each velocity bin is 1. As expected, the two low cloud regimes are much more 605 

common in subsidence regions and the remaining regimes are more common in ascent 606 

regions. The association of cloud regimes with large-scale dynamics provides 607 

quantitative targets for model simulations.  608 

Figure 10 displays differences between observations and CAM3.1 and CAM3.5 609 

simulations. Compared with observations (Figure 10a) CAM3.1 overestimates the 610 

occurrence frequency of deep convection with heavy precipitation in the three dynamic 611 

regimes with the strongest upward motion. In contrast, congestus are underestimated but 612 

thin cirrus are overestimated not only in the strongly ascending regimes, but also in the 613 

relatively weakly ascending and descending regimes. In descending regimes, the model 614 

produces too many low clouds with less precipitation but too few low clouds with 615 

precipitation. However, in strongly ascending regimes the model underestimates both of 616 

these low cloud regimes.  617 

The impact of the model changes between CAM3.1 and CAM3.5 on the frequency of 618 

cloud regimes in different dynamical regimes is displayed in Figure 10b. The occurrence 619 

frequency of congestus in each dynamic regime rises with stronger increases in the 620 

ascending regimes. Likewise the occurrence frequency of thin cirrus decreases in all 621 

regimes, but with larger decreases in ascending regimes. The occurrence frequency of 622 

deep convection with heavy precipitation has moderate decreases in the second and third 623 

bins with upward motion although this does not cancel completely the model 624 

overestimate. In nearly all regimes, the occurrence frequency of low clouds with 625 

precipitation increases, but the decreases in the occurrence frequency of low cloud with 626 

less precipitation are limited to descending regimes. As a result, cloud simulations from 627 
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CAM 3.5 compare more closely to the observations than those of CAM 3.1 as shown in 628 

Figure 10c. In terms of occurrence frequency, the primary error is that deep convection 629 

still happens too frequently in ascending regimes while low cloud with less precipitation 630 

happen too infrequently in these same regimes. This suggests that the deep convection 631 

parameterization is still acting too frequently in CAM3.5 perhaps at times when only low 632 

clouds should occur. 633 

5.4 Comparison between CAM3’s forecasts and its climate 634 

In order to examine the consistency between cloud regimes of CAM3’s climate and 635 

its forecasts, data from ‘climate’ integrations of CAM3 using only observed sea-surface 636 

temperatures and sea ice for June-September 2006 are analyzed following the method 637 

used for the forecasts. The joint histograms of atmospheric pressure and signal strength of 638 

the six regimes from the climate integrations are similar to those of the forecasts, but the 639 

RFO of the individual cloud regimes have several noticeable differences. In the climate 640 

integrations of both CAM3.1 and CAM3.5, the low clouds with precipitation regime is 641 

more common in the subsidence regions, and the congestus regime occurs more 642 

frequently in ascending regimes. In contrast, the deep convection with heavy 643 

precipitation regime is less frequent in the climate integrations than that from the 644 

forecasts. 645 

To show the relationship between cloud regimes and the 500 hPa pressure vertical 646 

wind, frequency differences similar to Figure 10 are created for the climate integrations 647 

(Figure 11). Although the differences with observations are not the same, the differences 648 

between CAM3.1 and CAM3.5 for almost all cloud regimes in climate integrations are 649 

similar to those of the forecasts. For example, low clouds with precipitation increase at 650 

the expense of low clouds with less precipitation, and the congestus clouds occur more 651 
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frequently in ascending regions. However, it is not obvious which version of the model 652 

generates cloud simulations more close to observations. For the simulations of CAM 3.5, 653 

although deep convection with heavy precipitation is reduced in the regions with strong 654 

upward motion, the occurrence of the congestus clouds is too frequent and that of low 655 

clouds with less precipitation is too infrequent compared with the observations. 656 

 657 
6. Summary  658 

 659 
This paper uses tropical measurements of cloud fields from CloudSat and CALIPSO 660 

to evaluate cloud simulations from the CAM3. The merged CloudSat and CALIPSO 661 

dataset provides the most accurate description of the vertical structure of hydrometeor 662 

fields currently possible on a global basis. It has the potential to advance our 663 

understanding of cloud processes and improve model evaluations. Observations are 664 

analyzed in terms of cloud regimes using a clustering technique applied to tropical data 665 

for the period June to September 2006. Six cloud regimes with distinctive cloud 666 

mesoscale patterns to the vertical profiles of signal strength are identified, and the 667 

geographical distributions of the occurrence frequencies of these principal cloud regimes 668 

illustrate the association with the large-scale atmospheric circulation. 669 

A satellite simulator package is applied to the model to aid quantitative evaluation of 670 

model performance using the new data. The joint histograms of atmospheric pressure and 671 

signal strength generated by the simulator package are used to assess model performance 672 

under the clustering framework. Assigning model histograms to the observed cloud 673 

regimes facilitates comparison in terms of both the occurrence frequency and properties 674 

of cloud regimes.  675 

     The comparison of the geographical distributions between model simulations and 676 

observations shows that CAM3.1 overestimates the occurrence of high clouds especially 677 
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in the Tropical Western Pacific, east central Africa, and northern South America, and 678 

underestimates the occurrence of low clouds with precipitation and congestus. Although 679 

similar differences have been found in many previous studies (Zhang et al. 2005; 680 

Williams and Tselioudis 2007), generally they used traditional satellite observations 681 

which are based on vertically integrated measurements. Due to the limitations of passive 682 

remote sensing in determining the location of cloud layers, it is necessary to establish the 683 

robustness of model evaluations by considering observations from active remote sensors 684 

that accurately determine the vertical structure of clouds and precipitation.  685 

     Differences in the joint histograms of atmospheric pressure and signal strength are 686 

able to expose model deficiencies in the simulated hydrometeor properties. It is found 687 

that cloud coverage of the two low cloud regimes and congestus regimes are significantly 688 

lower than observed. Low- and mid-level clouds may precipitate too heavily. The biases 689 

in the joint histogram for the deep convection with heavy precipitation regime suggests 690 

that the model overestimates convective precipitation but underestimates stratiform 691 

precipitation, and not enough precipitation from stratiform clouds reaches the surface. In 692 

general, the modeled clouds are too reflective in all regimes, which is consistent with that 693 

seen by Bodas-Salcedo et al. (2008) who used CloudSat data to evaluate clouds and 694 

precipitation in the Unified Model of the United Kingdom Meteorological Office. Also, it 695 

is particularly prominent in the fact that the model is unable to simulate hardly any clouds 696 

with radar reflectivity less than -30 but still detectable by CALIPSO, and a similar result 697 

was found with the French climate model (Chepfer et al. 2008). 698 

To examine the impact of model parameterizations on the simulated clouds, we also 699 

evaluate CAM 3.5. The cloud mesoscale patterns of CAM3.5 are similar to those from 700 

CAM 3.1, but the geographical distributions of the RFO are significantly different. The 701 
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new version of the model reduces deep convection and high clouds and produces more 702 

congestus and low clouds with precipitation. These changes are primarily due to 703 

implementation of dilute plumes in the deep convection parameterization which leads to 704 

greater detrainment in the middle troposphere and less detrainment in the upper 705 

troposphere. 706 

The cloud regimes are also sorted by the monthly mean vertical wind at 500 hPa to 707 

show the relationship between tropical cloud systems and the large-scale environment 708 

that influences the evolution of cloud systems. It is shown that, relative to CAM3.1, 709 

CAM3.5 suppresses deep convection with heavy precipitation and generates more 710 

congestus in ascending regions and low clouds with precipitation in subsidence regions. 711 

However, deep convection is still too frequent in strongly ascending regions, while low 712 

clouds are still too infrequent. 713 

Although results from climate integrations of CAM show different geographical 714 

distributions of the occurrence frequencies for the individual cloud regimes relative to 715 

those of the forecasts, the changes from CAM3.1 to CAM3.5 are identical for all the 716 

regimes. The differences of cloud simulations between forecasts and climate integrations 717 

may imply that the feedback processes are partly responsible for the climatological 718 

biases. Our result is not consistent with that in Williams and Brooks (2007), which found 719 

the cloud regimes are similar for the forecasts and the climate integrations with the Met 720 

Office Unified Forecast-Climate Model. The lack of differences in cloud regimes 721 

between forecasts and climate integrations may be partly due to the fact that the analysis 722 

used to initialize their climate model is from a data-assimilation system with the same 723 

physical model. Further investigation of the spin-up of model clouds and precipitation in 724 

CAM3 is warranted. 725 
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Although some of the conclusions from this study echo those of previous cluster 726 

studies using passive satellite (ISCCP) data, some new perspectives are provided. In 727 

particular, the fact that the CPR can see precipitation allows one to diagnose errors in 728 

model precipitation simulations together with cloud errors. One surprising result is that 729 

the CAM3.5 has as much or greater amounts of congestus as observations. This contrasts 730 

with all previous studies using ISCCP data which had concluded that models lack 731 

congestus clouds. A possible reconciliation between these results comes from the fact 732 

that we primarily use precipitation profiles in this study to detect congestus whereas the 733 

other studies using ISCCP data rely on identification of congestus through the visible and 734 

infrared cloud properties. If the results from the CAM are typical, it may be that models 735 

do produce congestus (middle level topped precipitating convection) but that the cloud 736 

properties of the congestus regime are seriously biased. Indeed, a preliminary comparison 737 

of ISCCP simulator results when the CAM simulates congestus clouds (as identified by 738 

CloudSat) suggests that the model cloud properties for the congestus regime are indeed 739 

biased when compared to MODIS observations of visible optical thickness and highest 740 

cloud top pressure. 741 

In the future, we will exploit the synergy of the A-Train to deliver complementary 742 

measurements of the same environmental phenomena and the collocated large-scale 743 

variables along the CloudSat flight track, to further understand model deficiencies. For 744 

example, Clouds and the Earth’s Radiant Energy System (CERES; Wielicki et al., 1996) 745 

radiative fluxes will be used to describe the radiative characteristics of the individual 746 

regimes and address the impact of the cloud regimes on the cloud radiative forcing at the 747 

top of atmosphere. 748 

 749 
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 low clouds 
with less precip 

low clouds with 
precip 

thin cirrus congestus cirrus anvils deep convection 
with heavy 

precip 
Clear  

RFO TCC RFO TCC RFO TCC RFO TCC RFO TCC RFO TCC RFO
Observation 35% 0.63 18% 0.69 9% 0.84 9% 0.84 8% 0.90 13% 0.93 8%

CAM 3.1 31% 0.36 14% 0.35 16% 0.70 5% 0.45 7% 0.88 24% 0.84 3%
CAM 3.5 
undilute 

29% 0.31 16% 0.32 14% 0.62 5% 0.41 6% 0.82 26% 0.84 4%

CAM 3.5 26% 0.27 22% 0.26 10% 0.50 10% 0.35 7% 0.73 21% 0.78 4%
 

Table 1. The data distributions for observations, simulations from CAM3.1, CAM3.5 with undilute plume, and CAM3.5 in the six 
cloud clusters and clear-sky condition with TCC lower than 5%. The data listed are the relative frequency of occurrence (RFO, left 
column), and the total cloud coverage (TCC, right column). The numbers of elements are 54,828 and 913,536 for observations and 
model simulations, respectively. 
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Figure 1. A case from Tropical Western Pacific Ocean (2°N 140°E) on Jul 15, 2006 that 
illustrates the creation of the joint histogram of atmospheric pressure and signal strength 
for a mesoscale cloud pattern. (a) radar reflectivity from CloudSat observations of 200 
adjacent profiles (b) hydrometeor mask by combining radar and lidar data (c) the joint 
histogram of atmospheric pressure and signal strength for this sample. The shading 
indicates the relative frequency of occurrence (RFO) of clouds or precipitation at each 
bin of atmospheric pressure; The left column depicts the cloud fraction detected by lidar 
but missed by radar (‘lidar only’ clouds in panel b); The line with diamonds depicts the 
vertical profile of the normalized mean dBZ index for this histogram. 
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Figure 2. Comparison of the meridional-mean cloud occurrence frequency for the tropical 
region (23.5˚S-23.5˚N) during June-September 2006: (a) Observations from CloudSat 
and CALIPSO (b) Simulator output of the cloud simulations from CAM 3.1 day-2 
forecasts. 
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Figure 3. Joint histograms of atmospheric pressure and signal strength for the centroids of 
the six tropical clusters from the CloudSat and CALIPSO observations collected in June-
September 2006. These clusters are named by the primary cloud morphology.  
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Figure 4. The time-averaged occurrence fraction of each CloudSat-CALIPSO cluster. The 
sum of the frequencies across clusters represents the frequency of cloudy patterns in a 
10˚-by-10˚ box. 
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Figure 5. Joint histograms of cluster centroids from CAM3.1 by assigning cloud 
simulations into observational clusters based on the minimum Euclidean distance. 
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Figure 6. The temporal-averaged occurrence fraction of each cluster from cloud 
simulations in CAM3.1 forecasts. 
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Figure 7. As in Fig. 5 but from CAM3.5. 
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Figure 8. As in Fig. 6 but from CAM3.5. 
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Figure 9. The frequency of the occurrence for each cluster from CloudSat-CALIPSO 
observation as a function of large-scale dynamics defined by the monthly mean vertical 
velocity at 500hPa calculated using NCEP analysis data. The boundaries for each omega 
bin are determined such that each bin represents the equivalent occurrence frequency of 
vertical velocities. (a) The fraction of elements of a given cluster which occur in the 
given vertical velocity bin. For this measure, the sum of the frequencies in the eight 
vertical velocity bins for each cluster is 1. The red line indicates the occurrence frequency 
if there were no association of cloud clusters with the 500hPa vertical velocity. (b) The 
fraction of cloudy elements of a given vertical velocity bin which belong to a given 
cluster. For this measure, the sum of the frequencies of the six clusters in each vertical 
velocity bin is 1.  
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Figure 10. The frequency difference of the six clusters in each vertical velocity bin for the 
fraction of elements of a given vertical velocity bin which belong to a given cluster. This 
measure is the same as was displayed in Figure 9(b): (a) The difference between 
observations and CAM3.1forecasts, (b) the difference between CAM3.5 and CAM3.1, 
and (c) the difference between observations and CAM3.5. 
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Figure 11. As in Fig. 10 but for CAM3 climate integrations. 
 
 


